Nonlinear diffusion and stable period 2 solutions of a discrete reaction-diffusion model
نویسندگان
چکیده
منابع مشابه
A Solvable Nonlinear Reaction-diffusion Model
We construct a coupled set of nonlinear reaction-diffusion equations which are exactly solvable. The model generalizes both the Burger equation and a Boltzman reaction equation recently introduced by Th. W. Ruijgrok and T. T. Wu. Key-Words : non-linear dynamics, reaction-diffusion, solvable model. October 1993 CPT-93/P.2956 anonymous ftp or gopher: cpt.univ-mrs.fr ∗Bibos and Fakultät für Physik...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملAn existence results on positive solutions for a reaction-diffusion model with logistics growth and indefinite weight
In this paper, using sub-supersolution argument, we prove an existence result on positive solution for an ecological model under certain conditions. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. The assumptions are that the ecosystem is spatially homogeneous and the herbivore density is a constant which are valid assumptions for mana...
متن کاملLarge Stable Pulse Solutions in Reaction-diffusion Equations
In this paper we study the existence and stability of asymptotically large stationary multi-pulse solutions in a family of singularly perturbed reaction-diffusion equations. This family includes the generalized Gierer-Meinhardt equation. The existence of N-pulse homoclinic orbits (N ≥ 1) is established by the methods of geometric singular perturbation theory. A theory, called the NLEP (=NonLoca...
متن کاملA numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1989
ISSN: 0377-0427
DOI: 10.1016/0377-0427(89)90039-3